Перейти к содержимому



Фотография

Диагностика и описание систем впрыска Motronic Dme 1.7 и Dme 3.1


Тема находится в архиве. Это значит, что в нее нельзя ответить.
Сообщений в теме: 9

#1 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 09 Февраль 2007 - 05:06

Устройство системы впрыска топлива Bosch Motronic

<<мои комментарии будут в таких скобках>>

------------------Цитата--------------------------------------------------------------

Ряд положений этой статьи откорректирован Сергеем Ивановым (наклонный желтый текст непосредственно в теле статьи).
Автор этих страниц не берется комментировать правильность того или иного мнения.

--------------------------------------------------------------------------------

Двигатели BMW оснащаются системой Motronic фиpмы Bosch, пpи этом pечь идет о комбиниpованной электpонной системе зажигания и впpыска топлива, котоpая называется также цифpовой системой yпpавления двигателя DME. Упpавление системой зажигания и впpыска топлива пpоизводится от общего блока yпpавления. Все детали системы впpыска топлива надежны и не тpебyют особого технического обслyживания; поэтомy pемонтные pаботы пpоводятся кpайне pедко. К томy же бОльшая часть пpовеpочных pабот тpебyет наличия доpогого специального обоpyдования и квалификации.

Cоставляющие системы Motronic
1. Топливный бак
2. Топливный насос
3. Топливный фильтp
4. Pегyлятоp давления топлива
5. Электpонный блок yпpавлени
6. Катyшка зажигани
7. Высоковольтный pаспpеделитель зажигани
8. Cвеча зажигани
9. Фоpсyнка
10. Дpоссельная заслонка
11. Выключатель дpоссельной заслонки
12. Pасходомеp воздyха
13. Потенциометp и датчик темпеpатypы воздyха
14. Лямбда-зонд
15. Датчик темпеpатypы
16. Pегyлятоp холостого хода
17. Индyктивный датчик импyльсов
18. Аккyмyлятоp
19. Выключатель зажигания
20. Выключатель кондиционеpа

Принцип действия системы Motronic DME M1.7 (четырехцилиндровый двигатель)

Топливо подается электpическим топливным насосом из топливного бака чеpез топливный фильтp к pаспpеделительной тpyбке, а затем к клапанным фоpсyнкам. Pегyлятоp давления в pаспpеделительной тpyбке обеспечивает постоянное давление 3,0 баp (двигатели 2,0 литpа) 3,5 баp (двигатели 2,5 литpа). Фоpсyнки имеют электpическое yпpавление и осyществляют импyльсный впpыск топлива. Пpи этом фоpсyнки имеют полyпоследовательное yпpавление, т.е. за один обоpот коленчатого вала пpоизводится одновpеменный впpыск двyмя фоpсyнками, а именно попеpеменно фоpсyнками цилиндpов 1-3 или 2-4.

Воздyх засасывается двигателем чеpез воздyшный фильтp и воздyхозабоpнyю тpyбкy и измеpяется pасходомеpом воздyха. В коpпyсе pасходомеpа воздyха pасположена заслонка, отклоняющаяся пpоходящим чеpез нее воздyхом на опpеделенный yгол. Угловое положение заслонки слyжит меpой пpоходящего количества воздyха. Инфоpмация о количестве пpоходящего воздyха пеpедается в блок yпpавления с потенциометpа.

Блок yпpавления pегyлиpyет в соответствии с измеpенной массой воздyха вpем впpыскивания и тем самым количество впpыскиваемого топлива. Пpи более длительном откpытии фоpсyнки впpыскивается больше топлива. Дополнительные чyвствительные элементы и датчики обеспечивают подачy нyжного количества топлива и в экстpемальных ситyациях движения.

Выключатель дpоссельной заслонки pасполагается непосpедственно на оси дpоссельной заслонки. Он подает в блок yпpавления сигналы положения дpоссельной заслонки в pежиме холостого хода и положения полной нагpyзки. Благодаpя этомy пpежде всего пpоисходит yпpавление в pежиме пpинyдительного хода: пока контакт выключателя дpоссельной заслонки замкнyт и одновpеменно число обоpотов пpевышает опpеделенное значение, блок yпpавления блокиpyет подачy топлива в двигатель.
Pеле топливного насоса находится в pелейной коpобке в левой задней части мотоpного отсека. Оно подает питание на топливный насос. Пpи пpекpащении постyпления импyльсов с датчика числа обоpотов пpи включенном зажигании (пpи заглохшем двигателе) схема контpоля пpеpывает подачy питания.
Текyщее положение коленчатого вала двигателя и число обоpотов опpеделяютс двyмя индyктивными датчиками: Датчик числа обоpотов и опоpной метки pасположен в кpеплении на pеменном шкиве коленвала, датчик опознования цилиндpов пpедставляет собой индyктивнyю петлю на пpоводе зажигания цилиндpа 4.
Лямбда-зонд (кислоpодный датчик) измеpяет на автомобилях, обоpyдованных pегyлиpyемым катализатоpом, содеpжание кислоpода в потоке отpаботавших газов и пеpедает соответствyющий электpический сигнал в блок yпpавления. По этой инфоpмации блок yпpавления изменяет состав всасываемой воздyшно-топливной смеси так, чтобы обеспечить оптимальное догоpание отpаботавших газов в катализатоpе.
Pегyлятоp холостого хода pегyлиpyет количество воздyха в pежиме холостого хода в pайоне дpоссельной заслонки. Благодаpя этомy достигается стабильное число обоpотов независимо от того, подключены ли дополнительные потpебители, такие как гидpоyсилитель pyлевого yпpавления или компpессоp кондиционеpа. Pегyлятоp холостого хода yпpавляется электpонным блоком yпpавления системы впpыска топлива.
Датчик темпеpатypы охлаждающей жидкости измеpяет темпеpатypy двигателя, котоpая оказывает большое влияние на pасход топлива.
Емкость с активиpованным yглем накапливает паpы топлива из топливного бака. Пpи pаботе двигателя эти паpы поpциями подводятся чеpез клапан вентиляции топливного бака к двигателю, благодаpя чемy yменьшается выбpос вpедных веществ и экономится топливо.

Cистема Motronic DME M3.1 (шестицилиндровый двигатель)


Эта система является дальнейшим pазвитием системы Motronic M1.1. Упpавление впpыском топлива последовательное, т.е. pаздельное для каждого цилиндpа двигателя. Кpоме того в память DME заложены специальные паpаметpические поля дл эксплyатации автомобиля в гоpных yсловиях (малая плотность воздyха). Пpочие отличия:

Вместо pасходомеpа объема воздyха yстановлен pасходомеp массы воздyха, котоpый имеет следyющие пpеимyщества: автоматическая компенсация изменений темпеpатypы и высоты над ypовнем моpя, отсyтствие подвижных элементов и потомy еще меньший износ. Пpинцип измеpения массы воздyха: Электpически pазогpеваема нагpевательная спиpаль охлаждается пpотекающим чеpез нее воздyхом. Дл поддеpжания постоянства темпеpатypы спиpали ток накала изменяется в соответствии с плотностью и темпеpатypой пpотекающего воздyха. По изменениям тока накала система Motronic опpеделяет массy всасываемого воздyха и в соответствии с этим изменяет количество впpыскиваемого топлива. Темпеpатypа всасываемого воздyха измеpяется специальным датчиком в штyцеpе дpоссельной заслонки.
Cистема зажигания не имеет подвижных элементов и поэтомy кpоме свечей зажигания не подвеpжена износy.
Hа моделях с автоматической тpансмиссией интегpиpование yпpавления от DME и автоматики еще более yлyчшает настpойкy тpансмиссии и смягчает пpоцессы пеpеключения пеpедач.
Hа шестицилиндpовых двигателях выпyска с 1993 года yстанавливается система yпpавления pаспpеделительным валом, сокpащенно называемая VANOS. Пpи этом pаспpеделительный вал впyскных клапанов повоpачивается под давлением масла относительно своей звездочки в зависимости от числа обоpотов и нагpyзки двигателя, что дает пpеимyщества в отношении pовной pаботы на холостом ходy, хаpактеpистики кpyтящего момента и pасхода топлива. DME пpи этом с помощью электpомагнитного клапана pегyлиpyет давление масла, подаваемого на исполнительный элемент.
Hакопитель неисправностей
Все ваpианты системы DME имеют аваpийные pежимы: Пpи отказе какого-либо датчика, блок yпpавления использyет вместо сигналов отказавшего датчика сpедние значения, запомненные в блоке. Пpи отказе pасходомеpа воздyха, блок yпpавлени воспpинимает для дозиpования топлива в качетстве исходных паpаметpов положение дpоссельной заслонки и число обоpотов двигателя. Пеpеход на этот pежим пpоисходит автоматически и не индициpyется водителю. Движение может пpодолжаться, пpи этом часто yхyдшение поведения автомобиля незаметно.

Пpи появлении во вpемя движения неиспpавности в системе зажигания и впpыска топлива, дефект запоминается в блоке yпpавления. Пpи выключенном двигателе дефект может быть вызван из памяти с помощью сеpвис-тестеpа BMW, подключаемого к pазъемy диагностики (спpава в мотоpном отсеке), и yстpанен. Поэтомy целесообpазно pегyляpно пpоизводить на станции обслyживания BMW опpос накопителя неиспpавностей, если даже кажется, что никаких неиспpавностей не наблюдалось.

В качестве дефектов запоминаются коpоткие замыкания, обpывы, пpевышени допyстимых значений обогащения или непонятное фyнкциониpование. Пpи этом запоминаемый дефект может быть отказом элемента, соответствyющих пpоводов или блока yпpавления. Кpоме того из памяти может быть выведена частота появления запомненного дефекта.

Это невозможно. Иногда на продвинутых системах (DME 3.3.1, DME3.3, DME 1.7.3, DME 1.7.5, MS 4.0, MS 4.1, MS 4.2 выводится информация о оборотах при которых произошла неисправность и еще какой нибуть параметр. Остальное выводится только в виде прюф-кодов (целая двоичная таблица, но только для разработчиков). В ней абсолютно точно описываются условия происхождения неисправности (поля значений).

<<Человек не понял, речь шла о частоте появления, т.е. как часто, сколько раз появлялся дефект, а не об оборотах>>

Cхема контpоля за напpяжением зажигания пpи низком напpяжении питания отключает системy DME, двигатель не может запyскаться.
DME пытается запустить двигатель, даже если напряжения хватает только на его жизнь. Благодаpя этомy yдается избежать повpеждения катализатоpа.


ВHИМАHИЕ: ПPИ ОТКЛЮЧЕHИИ АККУМУЛЯТОPА ИЛИ ПPИ ОТCОЕДИHЕHИИ PАЗЪЕМА ЭЛЕКТPОHHОГО БЛОКА УПPАВЛЕHИЯ ДАHHЫЕ В ПАМЯТИ CТИPАЮТCЯ!
Начиная с DME 1.1 мозги помнят неисправость в течении 2880 часов без питания. Теряться могут только адаптационные значения.


Пpавила собдюдения чистоты пpи pаботах с yстpойством впpыска топлива:

Тщательно очищать бензином места соединений и их окpyжение.
Cнятые детали складывать на чистyю подкладкy и накpывать. Использовать пленкy или бyмагy. Hе использовать тpяпки с очесами!!! Устанавливать только чистые детали.
Пpи откpытой системе: По возможности не pаботать с системой сжатого воздyха. По возможности не пеpедвигать автомобиль.

Правила техники безопасности при работах с устройством впрыска топлива
Hе запyскать двигатель пpи незакpепленных пpоводах на аккyмyлятоpе.
HИКОГДА не отключать аккyмyлятоp пpи pаботающем двигателе.
Пpи заpядке аккyмyлятоpа от быстpозаpядного yстpойства отключать аккyмyлятоp от боpтсети. Hе использовать быстpозаpядное yстpойство для запyска двигателя.
Пpежде чем пpовеpять системy впpыска, yбедиться, что система зажигания pаботает ноpмально, т.е. зажигание и свечи соответствyют заданным паpаметpам.
Пpи темпеpатypе свыше +80 гpад.C (сyшка после окpаски) снимать электpонный блок yпpавления.
Hе отсоединять и не подключать pазъем электpонного блока yпpавления пpи включенном зажигании.
Пpи пpовеpке компpессии отключать питание pеле топливного насоса, для чего вытащить основное pеле системы впpыска. Pеле pасположено в pелейной коpобке слева в мотоpном отсеке.
Проще не включать зажигание и подавать плюс на 11 ногу диагностического разьема. К тому же таким способом можно мерять компрессию одному.

Cистема находится под давлением. Поэтомy пpи замене деталей сбpосить давление в системе. Для этого остоpожно отсоединить подающий топливопpовод и пpоложить тpяпкy вокpyг тpyбопpовода.
Если двигатель пpостоял несколько часов, давление сбpасывается за это вpемя само.


--------------------------------------------------------------------------------
© Michael Shershnev, 2:5020/200.777


----------------------------------Конец цитаты---------------------------------------

ДИАГНОСТИКА Motronic 1.7

<<оригинал здесь:
http://autodiagnos.c...18i/bmw318i.htm
(или см. PDF в конце статьи) >>


---------------------------------Цитата-----------------------------------------------
Диагностируем BMW 318i, система Bosch Motronic 1.7.

Клиент приехал с жалобами плохого холодного старта. На горячую иногда, то часто -то редко, наблюдались рывки. Причем, это могло происходить как при движении по прямой так и на гору.



Для начала рассмотрим, как всегда, принцип действия и устройство системы управления.

Общие сведения

Cистема Motronic управляет первичной цепью системы зажигания, системой питания и системой холостого хода двигателя. Автоматический клапан системы регулировки оборотов холостого хода непосредственно управляется БЭУ для обеспечения постоянства оборотов холостого хода при всех условиях работы двигателя.

Опережение зажигания и длительность впрыска вычисляются БЭУ в неразрывной связи так, что для любого режима работы двигателя выбираются оптимальные параметры зажигания и топливоподачи.

Обработка сигналов

Начальный угол опережения зажигания записан в память БЭУ в виде трехмерной карты. Для определения угла опережения используются данные о нагрузке и частоте вращения коленчатого вала. В качестве основного датчика нагрузки двигателя используются: датчик расхода воздуха. Частота вращения двигателя определяется на основании данных датчика угла поворота коленчатого вала.

Для некоторых режимов работы двигателя, а именно, для пуска, холостого хода, замедления, а также для частичной и полной нагрузки вводится корректировка карты опережения. Основной корректирующий фактор - температура двигателя. Незначительные корректировки угла опережения и состава рабочей смеси производятся в зависимости от сигналов датчика температуры воздуха и датчика положения дроссельной заслонки.

Базовый состав рабочей смеси также записан в виде трехмерной карты в зависимости от нагрузки двигателя и частоты вращения. По этим данным система Motronic определяет длительность впрыска топлива.

Затем длительность впрыска топлива корректируется в зависимости от температуры воздуха и охлаждающей жидкости, напряжения аккумулятора и положения дроссельной заслонки. К другим факторам, влияющим на длительность впрыска относятся условия работы двигателя, например, пуск двигателя, прогрев, холостой ход, ускорение и замедление.

При работе двигателя на холостом ходу БЭУ пользуется специальными картами опережения и длительности впрыска. Холостые обороты при прогреве и рабочей температуре двигателя управляются клапаном регулирования холостого хода. Вместе с тем, Motronic осуществляет тонкую подстройку оборотов холостого хода за счет небольшого изменения в ту или иную сторону опережения зажигания.

Работа БЭУ

БЭУ получает постоянное питание от аккумулятора. Эта мера позволяет системе самодиагностики запомнить коды непостоянных неисправностей. После включения зажигания напряжение подается на катушку зажигания и БЭУ. При этом БЭУ заземляет обмотку главного реле системы впрыска топлива и включает реле.

Большинство датчиков (кроме тех, которые генерируют напряжение, например, датчик угла поворота коленчатого вала, датчик детонации и датчик кислорода получают эталонное питание напряжением 5.0 В от соответствующего контакта разъема БЭУ. После того, как БЭУ получает сигнал от датчика угла поворота коленчатого вала о том, что двигатель вращается, он замыкает цепь питания топливного насоса. Активизируется также зажигание и система впрыска топлива. Все исполнительные механизмы имеют питание номинальным напряжением, а БЭУ управляет ими, замыкая или размыкая цепь заземления исполнительных механизмов.

Функция самодиагностики

Функция самодиагностики периодически контролирует исправность входящих в систему датчиков и исполнительных устройств и в случае обнаружения неисправности формирует и помещает в память соответствующий код. Этот код можно извлечь из памяти микропроцессора с помощью специального считывателя через диагностический разъем.

В некоторых версиях системы имеется сигнальная лампочка, которая загорается при возникновении серьезной неисправности. Сигнальная лампочка будет гореть до тех пор, пока неисправность не будет устранена. После устранения неисправности код неисправности будет сохраняться в памяти БЭУ до тех пор, пока он не будет стерт при помощи считывателя кода неисправности или до отключения аккумулятора.

Усеченный режим работы БЭУ

Система Motronic имеет функцию обеспечения работоспособности двигателя при возникновении неисправности. В случае отказа одного или нескольких датчиков система управления двигателем заменяет показания неисправного датчика эталонными значениями. Однако, поскольку эталонные значения датчиков относятся только к прогретому двигателю, при пуске холодного двигателя и его прогреве могут возникнуть трудности. Кроме того, неисправность датчика расхода воздуха окажет негативное влияние на мощность и приемистость двигателя.

Адаптивность системы

Система Motronic постоянно адаптируется к изменению эксплуатационных параметров двигателя и постоянно контролирует данные, поступающие от различных датчиков. По мере износа компонентов двигателя система вносит корректирующие коэффициенты к картам, имеющимся в памяти БЭУ.

Эталонное напряжение

БЭУ обеспечивает питание большинства датчиков напряжением, равным 5.0 В. Это напряжение стабилизировано и не зависит от колебаний напряжения в бортовой сети автомобиля. Цепи заземления большинства датчиков также проходят через БЭУ, который замыкает или размыкает их по мере необходимости.

Зашита от помех

Для уменьшения помех радиоприему сигналы от большинства датчиков поступают по экранированным проводам. Для уменьшения помех экранировка этих проводов соединена с проводом заземления БЭУ (клемма №19].

Датчик скорости автомобиля

Этот датчик информирует БЭУ о скорости автомобиля. Обычно устанавливается датчик, работающий на принципе эффекта Холла. Этот датчик устанавливается либо непосредственно на коробке передач, либо на тросе спидометра.

Напряжение на датчик подается от главного реле или выключателя зажигания. При вращении троса спидометра датчик генерирует импульсы прямоугольной формы и посылает их в БЭУ. Частота сигнала прямо пропорциональна скорости автомобиля.

Задающий генератор

Датчик угла поворота коленчатого вала

Сигнал для определения моментов зажигания и впрыска топлива исходит от датчика угла поворота коленчатого вала, устанавливаемого рядом с маховиком. Датчик представляет собой постоянный магнит с электрической обмоткой. На маховике через равные интервалы расположены стальные зубья. При вращении маховика эти зубья проходят через магнитное поле, в результате чего в обмотке генерируется переменное напряжение, частота которого пропорциональна частоте вращения двигателя. Кроме того, два стальных зуба на маховике пропущены, что соответствует прохождению через верхнюю мертвую точку. Напряжение сигнала датчика меняется от 5 В на холостом ходу до 100 В при 6000 об/ мин. В БЭУ происходит преобразование аналогового сигнала датчика в цифровой.

Первичная и вторичная цепи системы зажигания

Общие сведения

Данные о загрузке, частоте вращения, температуре двигателя и положении дроссельной заслонки от соответствующих датчиков непрерывно поступают в БЭУ. На основании этих данных БЭУ выбирает из трехмерной карты, имеющейся в памяти процессора оптимальный угол опережения зажигания.

Усилитель зажигания

Усилитель выполняет роль электронного клоча, который по управляющему сигналу БЭУ включает и выключает в нужный момент первичную обмотку катушки зажигания. Необходимость усилителя объясняется тем, что управляющий сигнал задающего генератора имеет слишком малую мощность для управления катушкой зажигания.

Чаще всего усилитель устанавливается в БЭУ, хотя в некоторых моделях используется отдельный усилитель. БЭУ получает и обрабатывает сигналы, определяет период включенного состояния первичной цепи и момент зажигания и посылает сигнал в усилитель, переключающий катушку зажигания

Управление углом замкнутого состояния в системе Motronic основано на принципе «ограничения силы тока при постоянной энергии». Это означает, что длительность замкнутого состояния остается постоянной (4...5 миллисекунд) при всех частотах вращения двигателя. Следует иметь в виду, что полный цикл системы зажигания, измеряемый в градусах поворота коленчатого вала, будет изменяться при изменении частоты вращения двигателя.

Распределитель

Распределитель имеет только компоненты вторичной цепи системы зажигания. Он предназначен для распределения высокого напряжения от клеммы вторичной цепи катушки зажигания к свечам в соответствии с порядком работы цилиндров. Регулировка угла опережения зажигания не предусмотрена.

Датчик детонации (только для некоторых моделей)

Во многих автомобилях с системой Motronic используется датчик детонации. Этот датчик устанавливается на блоке цилиндров и состоит из пьезокерамической пластины, реагирующей на изменение шума при работе двигателя. Сигнал датчика в виде напряжения поступает в БЭУ для оценки.

Первоначально БЭУ устанавливает оптимальный момент зажигания. При возникновении детонации происходит уменьшение угла опережения для определенного цилиндра. Приблизительно через 2 секунды (от 20 до 120 циклов работы двигателя) угол опережения зажигания вновь начинает увеличиваться шагами по 0.75° до тех пор, пока детонация вновь не возникнет или не будет достигнут оптимальный угол опережения. Эта процедура непрерывно повторяется для всех цилиндров во время работы двигателя.

Если в датчике детонации или его цепи возникнет неисправность, система самодиагностики отключит его и установит базовый угол опережения на уровне 10.5°.

Впрыск топлива

Основные сведения

В памяти БЭУ системы Motronic имеется трехмерная карта длительности открытия форсунок в зависимости от нагрузки и скорости. Необходимая информация для определения длительности открытия форсунок поступает от различных датчиков и обрабатывается в БЭУ.

Топливные форсунки

Топливные форсунки представляют собой клапаны с электромагнитным приводом, управляемые БЭУ. Напряжение питания подается на форсунки от главного реле, а цепь заземления проходит через БЭУ, который замыкает ее на 1.5...10 миллисекунд. Длительность импульса зависит от температуры двигателя, нагрузки, частоты вращения и режима эксплуатации. При закрытии форсунки возникает обратная э.д.с., которая может достичь 60 В.

Система последовательного впрыска

В системе с последовательным впрыском открытие форсунок происходит последовательно, в соответствии с порядком работы цилиндров двигателя. Каждая форсунка присоединена к БЭУ отдельным проводом. Для облегчения пуска холодного двигателя длительность впрыска топлива увеличивается для обогащения рабочей смеси. Кроме того, частота включения форсунок увеличивается в два раза.

Идентификация цилиндров [только для системы с последовательным впрыском]

В ранних версиях системы Motronic БЭУ не распознавал цилиндр №1, а также порядок работы цилиндров, поскольку этого и не требовалось. Поскольку сигнал для системы зажигания поступал от коленчатого вала или распределителя, необходимый цилиндр определялся положением коленчатого вала, распределителя, клапанов и ротора системы зажигания. В системах, где форсунки открываются одновременно, топливо попадает на заднюю часть клапанов и находится там до тех пор, пока клапан не откроется.

Поскольку в системах с последовательным впрыском топлива форсунки должны открываться в порядке работы цилиндров, БЭУ должен получать информацию о положении коленчатого вала. В нашем случае это достигается за счет установки фазового дискриминатора (датчика идентификации цилиндра), установленного на высоковольтном проводе первого цилиндра. Датчик опознает цилиндр №1 и посылает сигнал в БЭУ, который рассчитывает положение остальных цилиндров.

Датчики нагрузки

Для работы БЭУ требуется наличие датчика, определяющего расход воздуха. После определения расхода воздуха БЭУ вычисляет требуемое количество топлива. Датчик расхода воздуха с заслонкой - основной датчик нагрузки, используемый в системе Motronic 1.7.

Датчик расхода воздуха с заслонкой

Датчик располагается между воздушным фильтром и корпусом дроссельной заслонки. Воздух проходит через датчик и разворачивает его заслонку. Чем больше поток воздуха, тем сильнее отклоняется заслонка (см. рис. Image7.gif). Эта заслонка соединена рычагом с движком потенциометра, сопротивление которого меняется при развороте заслонки. Это позволяет посылать в БЭУ сигнал с напряжением, пропорциональным расходу воздуха. Этот датчик - трехпроводного типа. Напряжение питания (5.0 В) подается на один конец потенциометра, другой коней которого заземлен. Третий провод связан с движком. В зависимости от напряжения сигнала БЭУ вычисляет объем воздуха, поступающий в двигатель, и определяет необходимую длительность впрыска топлива. Для сглаживания колебаний заслонки датчик имеет специальный демпфер. Датчик расхода воздуха является основным датчиком, определяющим длительность впрыска топлива.

Датчик температуры воздуха

Датчик температуры воздуха устанавливается в воздуховоде перед датчиком расхода воздуха. Поскольку с ростом температуры плотность воздуха падает, показания датчика температуры позволяют уточнить массовый расход воздуха в двигателе.

Напряжение питания датчика равно 5.0 В. Цепь заземления датчика объединена с цепью заземления датчика расхода воздуха. Датчик представляет собой терморезистор с отрицательным температурным коэффициентом. Напряжение в зависимости от температуры подается с выхода датчика в БЭУ. Напряжение сигнала составляет 2.0...3.0 В при температуре воздуха 20°С и падает до 1.5 В при увеличении температуры до 40°С.

Потенциометр регулировки СО

Потенциометр регулировки расположен в датчике расхода воздуха и позволяет выполнить регулировку состава рабочей смеси для холостых оборотов. На потенциометр подается напряжение питания (5.0 В). Цепь заземления соединена с цепью заземления датчика расхода воздуха. Третий провод соединен с движком потенциометра. При вращении оси движка напряжение сигнала изменяется и БЭУ производит корректировку состава рабочей смеси на холостых оборотах двигателя. Для автомобилей, оборудованных каталитическим преобразователем, этот потенциометр не функционирует и состав рабочей смеси не регулируется. В нашем случае регулировка СО не поддерживается.

Датчик температуры охлаждающей жидкости

Датчик встроен в систему охлаждения и имеет в своем составе терморезистор с отрицательным температурным коэффициентом. При холодном двигателе датчик имеет большое сопротивление. При прогреве двигателя температура охлаждающей жидкости повышается и сопротивление датчика уменьшается. Падение напряжения на терморезисторе подается в БЭУ, который по этому напряжению определяет температуру двигателя.

Датчик питается эталонным напряжение 5.0 В от БЭУ. Часть этого напряжения снимается с терморезистора, который меняет свое сопротивление в зависимости от температуры, и подается в БЭУ. Это напряжение уменьшается в зависимости от сопротивления датчика. Напряжение сигнала составляет 2...3 В при температуре охлаждающей жидкости 20°С и уменьшается до 0.5... 1 В при температуре 80... 100°С. Температура двигателя используется системой управления для корректировки момента зажигания и длительности впрыска.

Потенциометрический датчик положений дроссельной заслонки

Датчик предназначен для информирования БЭУ о положении дроссельной заслонки (холостой ход, замедление, ускорение, полное открытие дроссельной заслонки). Датчик представляет собой трехпроводной потенциометр. Два провода используются для питания (5.0 В) и заземления датчика. Третий провод связан с движком и представляет собой провод сигнала датчика.

В зависимости от напряжения сигнала БЭУ определяетугол открытия дроссельной заслонки (от О.В В до 4.5 В при полностью открытой заслонке], а также скорость его изменения. При полностью открытой заслонке БЭУ обеспечивает дополнительное обогащение рабочей смеси. При замедлении БЭУ отключает систему впрыска топлива. Возобновление впрыска топлива произойдет только при достижении

Управление оборотами холостого хода

Система Motronic использует различные методы управления оборотами холостого хода при пуске двигателя, его прогреве или работе прогретого двигателя.

При увеличении электрической нагрузки, например, при включении фар, вентилятора ото-пителя и т.п., обороты холостого хода должны уменьшиться. БЭУ реагирует на это уменьшение оборотов и приводит в действие клапан управления холостым ходом для увеличения расхода воздуха, что приводит к увеличению оборотов. После выключения нагрузки БЭУ уменьшает обороты холостого хода. Постоянство оборотов холостого хода поддерживается как для холодного, так и для горячего двигателя. Если клапан управления холостым ходом выйдет из строя, двигатель будет работать с основной (базовой) частотой вращения коленчатого вала.

Электромагнитный клапан управления холостым ходом [двухпроводного типа]

Клапан представляет собой исполнительный электромагнитный механизм, управляемый БЭУ (см, рис. 6.8]. Он расположен в шланге, соединяющем впускной коллектор с корпусом дроссельной заслонки. Питание клапана обычно осуществляется от аккумулятора, а цепь заземления управляется БЭУ.

Рабочий цикл клапана можно измерить в цепи заземления и определить время открытия или закрытия клапана в процентах от общего времени работы.

Клапан управления холостым ходом с электродвигателем (трехпровод-ного типа)

Клапан расположен в шланге, соединяющем впускной коллектор с корпусом дроссельной заслонки. Он управляется реверсивным электродвигателем постоянного тока, который может вращаться в обоих направлениях. При вращении двигателя в одном направлении воздушный поток увеличивается, а при вращении в другом - уменьшается. Питание двигателя осуществляется от аккумулятора, а заземление -по двум цепям через БЭУ.

Рис. Клапан управления холостым ходом трехпроводного типа

Изменение вращения электродвигателя происходит при замыкании одной или другой цепи заземления. В действительности, обе цепи включены друг против друга. Это предотвращает поворот клапана до упора в одном из направлений. Таким образом, клапан находится в среднем положении.

Рабочий цикл клапана можно измерить на каждой цепи заземления, чтобы определить время открытия в процентах от общего времени срабатывания.

Реле

В зависимости от версии в системе Motronic используется либо блок из двух реле, либо два отдельных репе [главное репе системы и репе топливного насоса]. Независимо от конструкции, принцип работы системы не меняется. Незначительные различия могут быть в реализации системы на конкретной модели. Нумерация контактов репе выполнена по Европейскому стандарту DIN.

Напряжение от аккумулятора подается на клеммы 30 и 86 главного реле и клемму 30 реле топливного насоса. После включения зажигания БЭУ заземляет клемму 85 и обмотка главного реле возбуждается. Контакты главного репе замыкаются и номинальное напряжение поступает на клемму 87. К этой клемме подключены цепи питания форсунок, БЭУ, клапана управления холостым ходом. Кроме того, напряжение подается на вывод контакта 86 реле топливного насоса.

После включения зажигания БЭУ на короткое время заземляет контакт 85. При этом возбуждается обмотка репе топливного насоса. Контакты 30 и 87 соединяются и напряжение подается на топливный насос. Приблизительно через 1 секунду БЭУ размыкает цепь и насос останавливается. За это время насос успевает повысить давление в топливной системе, что облегчает пуск двигателя.

Цепь питания топливного насоса остается разомкнутой до тех пор, пока коленчатый вал двигателя не начнет вращаться. После того, как БЭУ получит сигнал от датчика угла поворота коленчатого вала насос включится и будет работать до тех пор, пока двигатель не будет остановлен. Кроме того, к цепи питания топливного насоса подключен подогреватель датчика кислорода. Это сделано для того, чтобы подогреватель датчика включался только при работающем двигателе.

Топливная система

Внутренний насос

Топливный насос шестеренчатого типа с внутренним зацеплением устанавливается вертикально внутри топливного бака. Топливо проходит через насос и подается в топливную магистраль под давлением.

Топливный бак (все модели]

Обычно производительность топливного насоса превышает потребность топливной системы, поэтому избыток топлива возвращается в топливный бак. Максимальное давление топлива в системе может достигать 5 бар. Для предотвращения потери давления на выходе топливного насоса обычно устанавливается запорный клапан. Благодаря этому клапану после выключения зажигания и остановки топливного насоса, в системе некоторое время поддерживается избыточное давление.

Регулятор давления топлива

Давление в топливной системе поддерживается постоянным в пределах 2.5...3.0 бар (в зависимости от модели). Это постоянство достигается за счет установки регулятора давления. Регулятор давления устанавливается на выходе топливной магистрали и поддерживает в ней постоянное давление.

Верхняя часть регулятора соединена вакуумным шлангом с впускным коллектором для того, чтобы скорректировать изменение давления в коллекторе. Это означает, что давление топлива всегда выше давления во впускном коллекторе на одну и ту же величину. Таким образом, количество введенного топлива зависит только от длительности работы форсунок, определяемого БЭУ.

При оборотах холостого хода или полностью открытой дроссельной заслонке и отсоединенной вакуумном шланге давление в топливной системе достигает 2.5 или 3.0 бар. При подключенной вакуумном шланге давление топлива на 0.5 бар ниже давления в системе,

Каталитический преобразователь и управление составом выхлопных газов

Каталитический преобразователь

Автомобили, оборудованные каталитическим преобразователем (конвертером), имеют также датчик кислорода, что позволяет системе функционировать в режиме с обратной связью. Датчик кислорода снабжен подогревателем для того, чтобы быстрее начать работать после пуска двигателя. Обычно питание подогревателя датчика осуществляется от реле топливного насоса. Таким образом, подогреватель датчика работает только при работающем двигателе.

Электромагнитный клапан угольного фильтра

На автомобиле может быть установлен угольный фильтр для улавливания паров топлива. Пары топлива находятся в угольном фильтре до тех пор, пока БЭУ не открывает клапан продувки (при некоторых режимах). При открытии клапана пары топлива попадают во впускной коллектор и сгорают в цилиндрах двигателя.



Параметры датчиков и исполнительных механизмов, возможные регулировки и методы нахождения неисправностей

Диагностику начнем с проверки давления топливного насоса. Манометр показал давление 3 - 3,1 бар, что полностью соответствует норме. Тест на производительность тоже оказался положительным 1,75 л/мин.

Свечи все протестировали, как полагается, на стенде для проверки свечей зажигания под давлением 11-14 атм. Пробоев и пропусков не зафиксировано.

Выполнены все визуальные проверки, тщательно обследован впускной тракт на возможность подсоса воздуха (все хорошо знают что двигатель BMW чувствителен к избыточному воздуху). Но ничего не нашли.

Подключили сканер KTS 300 к диагностическому разъему. Кодов никаких не было и параметры датчиков соответствовали норме.

Но что так может влиять на работу двигателя (проблему смотрите в начале статьи)?

Решили сделать тест производительности форсунок, хотя их уже мыли 2 месяца назад на другом СТО, но лишний раз проверить и убедится все таки стоит. Проверка форсунок именно на этом двигателе - дело не из простых, ведь для снятия инжекторов понадобилось снимать впускной коллектор.

На двигателе стояли форсунки 0 280 150 715 с производительностью 149 cm3/min, при давлении 3 бар. У нас получился небольшой разброс, но отличие параметров не выходило за 5%. И ко всему прочему, факел распыла форсунок был весьма хороший.

Сделаны основные проверки. Оказывается, на первый взгляд, все нормально, но машина все равно дергается.

Что может влиять еще на перебои в двигателе при нагрузке?

Остается проверить показания на ходу следующих дачиков:

- датчика расхода воздуха;

- датчика частоты вращения коленвала;

- датчика положения распредвала.



Датчик расхода воздуха (расходомер):

<< Прикрепленный файл  Rashodomer.jpg   55,25К   247 Количество загрузок: >>

Сигнал снимаем со второго контакта:

зажигание вкл. 0.2 - 0.3в
хх 0.75 - 1.5в
2000 об/мин 2.0 - 2.5в
3000 об/мин 2.5 - 3.5в
Полный газ 3.0 - 4.5в

Для обнаружения скачков и провалов снимаемого напряжения используем осцилограф.

Результат - все ок.



Датчики частоты коленвала и положения распредвала. Их сопротивление должно составлять 520 Ом и 1Ом соответственно. Это тоже норма.

Но диаграмма датчика частоты вращения коленвала, во время сбоев, была совершенно неестественной. То пропадала, то рисовала большие и хаотичные пики. При детальном осмотре проводки, обнаружили немного надломанный провод у самого основания датчика. Вскрыли изоляцию, и оказалось что провода переломались, а контакт в основном держался за счет изоляции.

Гадать по какой причине это произошло не стали, ведь много шаловливых ручек побывает в машине за 12 лет и что и как там делалось никто не знает.

Самое главное, что нашли причину рывков. Нормализовалась так же и работа во время холодного старта. Как видите оправдывается мнение о том, что на холодном двигателе больше заметны проявления каких либо неисправностей систем управления. Ведь рывки были заметны только при езде, а на горячую заводилась и работала на хх отлично. А плохой холодный запуск нам сигнализировал - что что-то не так.
-------------------------конец цитаты--------------

Прикрепленный файл  Diagnostica_Motronic.pdf   860,68К   417 Количество загрузок:

Сообщение отредактировал YURI_78RUS: 14 Апрель 2007 - 10:27


#2 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 22 Март 2007 - 02:54

Привожу разумную статью по диагностике систем впрыска.

Моменты, на которые я хотел бы обратить внимание, я выделю жирным. Комментарии будут в <<скобочках>>.
Рисунки и pdf выложу позже, когда возможно будет прикреплять вложения.

----------------------------------------------

Автор В. Кутузов www.ecu.ru

От автора. Вполне возможно, что этот текст покажется вам знакомым. Идея его написания относится, примерно, к 2000 году, тогда же в Сети появился первый незаконченный вариант с обещанием продолжения. В дальнейшем я внес заметное количество поправок и дополнений в основной текст, а также постарался придать ему логическую завершенность.

Диагностика.

Введение

Исправен ли ECU? Не торопитесь…

Универсальный алгоритм

С чего начать?

Осмотр и соображения здравого смысла

Чтение кодов неисправностей

Осмотр и проверка ECU

Проверка функций обеспечения

Проверка функций исполнения (часть1) + Широтно-импульсный генератор

Проверка функций исполнения (часть 2) + Принципиальные схемы лямбда-индикаторов

Заключение

Введение.

При всем многообразии абсолютное большинство автомобильных микропроцессорных систем управления построено по единому принципу. Архитектурно этот принцип таков:

датчики состояния – командный компьютер – исполнительные механизмы изменения (состояния).

Главенствующая роль в таких системах управления (двигателем, АКПП и др.) принадлежит ECU, недаром народное название ECU как командного компьютера – «мозги». Не каждый блок управления компьютер, изредка пока еще встречаются ECU, не содержащие микропроцессора. Но эти аналоговые устройства восходят к 20-летней технике и ныне почти вымерли, поэтому их существование можно не принимать в расчет.

По набору функций ECU подобны друг другу настолько, насколько подобны друг другу соответствующие системы управления. Фактические отличия могут быть весьма велики, но вопросы электропитания, взаимодействия с реле и прочими соленоидными нагрузками идентичны для самых разных ECU. Поэтому важнейшие действия первичной диагностики разных систем оказываются одинаковыми. А излагаемая далее общая логика диагностики применима к любым автомобильным системам управления.

В разделах «Проверка функций…» в рамках предлагаемой логики подробно рассмотрена диагностика системы управления двигателем в ситуации, когда стартер работает, а двигатель не заводится. Этот случай выбран с целью, показать полную последовательность проверок при отказе системы управления бензиновым двигателем.

Исправен ли ECU? Не торопитесь...

Разнообразие систем управления обязано своим появлением на свет частой модернизации а/м агрегатов их производителями. Так, например, каждый двигатель производится в течение ряда лет, но его система управления модифицируется почти ежегодно, и исходная со временем может быть полностью заменена на совершенно другую. Соответственно, в разные годы один и тот же двигатель может комплектоваться в зависимости от состава системы управления разными, похожими или не похожими друг на друга блоками управления. Пусть механика такого двигателя хорошо известна, но часто оказывается, что как раз видоизмененная система управления приводит к затруднениям в локализации внешне знакомой неисправности. Казалось бы, в такой ситуации важно определить: а исправен ли новый, не знакомый ECU?

На самом деле гораздо важнее преодолеть соблазн задумываться на эту тему. Слишком просто усомниться в исправности экземпляра ECU, ведь собственно про него, даже как о представителе известной системы управления, обычно мало что известно. С другой стороны, существуют несложные приемы диагностики, применимые в силу своей простоты одинаково успешно к самым различным системам управления. Такая универсальность объясняется тем, что указанные приемы опираются на родство систем и тестируют их общие функции.

Данная проверка инструментально доступна любому гаражу, и игнорировать ее, ссылаясь на применение сканера, неоправданно. Наоборот, оправданна перепроверка результатов сканирования ECU. Ведь то, что сканер весьма облегчает диагностику – распространенное заблуждение. Точнее было бы сказать, что -- да, облегчает поиск одних, но никак не помогает в выявлении других и затрудняет поиск третьих неисправностей. На самом деле диагност способен обнаружить при помощи сканера 40...60 % неисправностей (см. рекламные материалы по диагностическому оборудованию), т.е. этот прибор как-то отслеживает, примерно, их половину. Соответственно около 50% неполадок сканер либо не отслеживает вовсе, либо указывает на несуществующие. К сожалению, приходиться констатировать, что одного этого бывает достаточно, чтобы ошибочно забраковать ECU.

До 20% из поступающих на диагностику ECU оказываются исправными, и большинство таких обращений – результат скоропалительного вывода о выходе ECU из строя. Не будет большим преувеличением сказать, что за каждым абзацем далее стоит случай разбирательства с тем или иным а/м после установления исправности его ECU, который первоначально был сдан в ремонт как предположительно дефектный.

Универсальный алгоритм.

Излагаемый способ диагностики использует принцип «презумпции невиновности ECU». Другими словами, если нет прямых доказательств выхода ECU из строя, то следует предпринять поиск причины неполадки в системе в предположении исправности ECU. Прямых доказательств дефектности блока управления существует всего два. Либо ECU имеет видимые повреждения, либо проблема уходит при замене ECU на заведомо исправный (ну, либо переносится на заведомо исправный а/м вместе с подозрительным блоком; иногда это делать небезопасно, к тому же здесь встречается исключение, когда блок управления поврежден так, что не способен работать во всем диапазоне эксплуатационного разброса параметров разных экземпляров одной и той же системы управления, но на одном из двух а/м все-таки работает).

Диагностика должна развиваться в направлении от простого к сложному и в согласии с логикой работы системы управления. Именно поэтому предположение о дефекте ECU следует оставить «на потом». Сначала рассматриваются общие соображения здравого смысла, затем последовательной проверке подлежат функции системы управления. Эти функции четко разделяются на обеспечивающие работу ECU и на функции, исполняемые ECU. Сначала должны проверяться функции обеспечения, затем – функции исполнения. В этом главное отличие последовательной проверки от произвольной: она выполняется по приоритетеу функций. Соответственно, каждый из этих двух видов функций может быть представлен своим списком в порядке убывания значимости для работы системы управления в целом.

Диагностика успешна только тогда, когда указывает на важнейшую из утраченных или нарушенных функций, а не на произвольный набор таковых. Это существенный момент, т.к. потеря одной функции обеспечения может приводить к невозможности работы нескольких функций исполнения. Последние не будут работать, но отнюдь не будут утрачены, их отказ произойдет просто в результате причинно-следственных связей. Именно поэтому такие неисправности принято называть наведенными.

При непоследовательном поиске наведенные неисправности маскируют истинную причину проблемы (весьма характерно для диагностики сканером). Понятно, что попытки бороться с наведенными неисправностями «в лоб» ни к чему не приводят, повторное сканирование ECU дает прежний результат. Ну а ECU «есть предмет темный и научному исследованию не подлежит», да и заменить его для пробы, как правило, нечем – вот схематичные наброски процесса ошибочной выбраковки ECU.

Итак, универсальный алгоритм поиска неисправности в системе управления таков:

визуальный осмотр, проверка простейших соображений здравого смысла;
сканирование ECU, чтение кодов неисправностей (по возможности);
осмотр ECU или проверка путем замены (по возможности);
проверка функций обеспечения работы ECU;
проверка функций исполнения ECU.


С чего начать?

Важная роль принадлежит подробному опросу владельца о том, какие внешние проявления неисправности он наблюдал, как возникла или развивалась проблема, какие действия в этой связи уже были предприняты. Если проблема в системе управления двигателем, следует уделить внимание вопросам про сигнализацию (противоугонную систему), т.к электрика дополнительных устройств заведомо менее надежна из-за упрощенных приемов их установки (например, пайка или стандартные соединители в назначаемых точках ветвления и рассечения штатной проводки при подключении дополнительного жгута, как правило, не применяются; причем пайка зачастую не применяется сознательно из-за якобы ее неустойчивости перед вибрацией, что для качественной пайки, конечно, не так).

Кроме того, необходимо точно установить, какой именно а/м перед вами. Устранение сколько-нибудь серьезной неисправности в системе управления предполагает использование электрической схемы последней. Электросхемы сведены в специальные автомобильные компьютерные базы по диагностике и ныне весьма доступны, надо лишь правильно выбрать нужную. Обычно, если задать самую общую информацию по а/м (отметим, что базы по электросхемам не оперируют VIN-номерами), поисковик базы найдет несколько разновидностей модели а/м, и потребуется дополнительная информация, которую может сообщить владелец. Например, название двигателя всегда записано в техпаспорте – буквы перед номером двигателя.

Осмотр и соображения здравого смысла.

Визуальный осмотр играет роль простейшего средства. Это совсем не означает простоту проблемы, причина которой, возможно, будет найдена таким способом.

В процессе предварительного осмотра должно проверяться:

наличие топлива в бензобаке (если подозрение на систему управления двигателем);
отсутствие затычки в выхлопной трубе (если подозрение на систему управления двигателем);
затянуты ли клеммы аккумуляторной батареи (АКБ) и их состояние;
отсутствие видимого повреждения электропроводки;
хорошо ли вставлены (должны быть защелкнуты и не перепутаны) разъемы проводки системы управления;
предыдущие чужие действия по преодолению проблемы;
подлинность ключа зажигания – для а/м со штатным иммобилайзером (если подозрение на систему управления двигателем);
Иногда бывает полезно осмотреть место установки ECU. Не так уж редко оно оказывается залито водой, например, после мойки двигателя установкой высокого давления. Вода губительна для ECU негерметичного исполнения. Заметим, что разъемы ECU также бывают как герметичного, так и простого исполнения. Разъем должен быть сухим (допустимо применять в качестве водоотталкивающего средства, например, WD-40).

Чтение кодов неисправностей.

Если для чтения кодов неисправностей применяется сканер или компьютер с адаптером, важно, чтобы их соединение с цифровой шиной ECU было правильно выполнено. Ранние ECU не устанавливают связь с диагностикой, пока не подсоединены обе линии K и L.

Сканирование ECU, либо активация самодиагностики а/м позволят быстро определить несложные проблемы, например, из числа обнаружения неисправных датчиков. Особенностью здесь является то, что для ECU, как правило, все равно: неисправен сам датчик или его проводка.

При обнаружении неисправных датчиков встречаются исключения. Так, например, дилерский прибор DIAG-2000 (французские а/м) в целом ряде случаев не отслеживает обрыва по цепи датчика положения коленвала при проверке системы управления двигателем (в отсутствие пуска именно по причине указанного обрыва).

Исполнительные механизмы (например, реле, управляемые ECU) проверяются сканером в режиме принудительного включения нагрузок (тест исполнительных механизмов). Здесь опять-таки важно отличать дефект в нагрузке от дефекта в ее проводке.

По-настоящему должна настораживать ситуация, когда наблюдается сканирование множественных кодов неисправностей. При этом весьма велика вероятность того, что часть из них относится к наведенным неисправностям. Такое указание на неисправность ECU, как «нет связи», -- означает, скорее всего, что ECU обесточен или отсутствует какое-нибудь одно его питание или заземление.

Если вы не располагаете сканером или его эквивалентом в виде компьютера с адаптером линий K и L, большую часть проверок можно сделать вручную (см. разделы «Проверка функций…»). Конечно, это будет медленнее, но при последовательном поиске и объем работы может быть невелик.

Осмотр и проверка ECU.

В тех случаях, когда доступ к ECU прост, а сам блок может быть легко вскрыт, следует осмотреть его. Вот что может наблюдаться в неисправном ECU:

обрывы, отслоение токоведущих дорожек, часто с характерными подпалинами;
вспученные или треснувшие электронные компоненты;
прогары печатной платы вплоть до сквозных;
вода;
окислы белого, сине-зеленого или коричневого цвета;
Как уже было сказано, достоверно проверить ECU можно путем замены на заведомо исправный. Очень хорошо, если диагност располагает проверочным ECU. Однако следует считаться с риском вывести этот блок из строя, ведь часто первопричина проблемы – неисправность внешних цепей. Поэтому необходимость иметь проверочные ECU не очевидна, а сам прием следует применять с большой осмотрительностью. На практике гораздо продуктивнее в начальной фазе поиска считать ECU исправным уже только потому, что его осмотр не убеждает в обратном. Бывает невредно просто убедиться, что ECU на месте.

Проверка функций обеспечения.

К функциям обеспечения работы ECU системы управления двигателем относятся:

питание ECU как электронного устройства;
обмен с управляющим блоком иммобилайзера – если имеется штатный иммобилайзер;
запуск и синхронизация ECU от датчиков положения коленвала и/или распредвала;
информация с прочих датчиков.
Проверьте отсутствие сгоревших предохранителей.

Проверьте состояние АКБ. Степень заряженности исправной батареи с достаточной для практики точностью может быть оценена по напряжению U на ее клеммах при помощи формулы (U-11.8) * 100% ( пределы применимости -- напряжение АКБ без нагрузки U=12.8…12.2V). Глубокий разряд АКБ со сниженим ее напряжения без нагрузки до уровня менее 10V не допускается, иначе происходит необратимая потеря емкости батареи. В режиме работы стартера напряжение АКБ не должно падать менее 9V, иначе фактическая емкость батареи не соответствует нагрузке.

Проверьте отсутствие сопротивления между минусовой клеммой АКБ и массой кузова; и массой двигателя.

Затруднения в проверке питания обычно происходят тогда, когда ее пытаются провести, не имея схемы включения ECU в проводку. За редким исключением на разъеме жгута ECU (блок на время проведения проверки следует отсоединить) присутствует несколько напряжений +12V при включенном зажигании и несколько точек заземления.

Питания ECU это соединение с «плюсом» АКБ («30») и соединение с замком зажигания («15»). «Дополнительное» питание может поступать с главного реле (Main Relay) . При замерах напряжения на отключенном от ECU соединителе важно задать небольшую токовую нагрузку проверяемой цепи, подключив параллельно щупам измерителя, например, маломощную контрольную лампу.

В том случае, если главное реле должно включаться самим ECU, следует подать потенциал «массы» на контакт разъема жгута ECU, соответствующий концу обмотки указанного реле, и наблюдать появление дополнительного питания. Делать это удобно с помощью джампера – длинного куска провода с миниатюрными зажимами-крокодилами (в одном из которых следует зажать булавку).

Джампер, кроме того, применяют для пробного обхода подозрительного провода путем параллельного включения, а также для удлинения одного из щупов мультиметра, что позволяет держать в освободившейся руке прибор, свободно перемещаясь с ним по точкам проведения измерений.

рис


джампер и его реализация

Должны быть целыми провода соединения ECU с «массой», т.е. заземления («31»). Недостоверно устанавливать их целостность «на слух» прозвонкой мультиметром, т.к. такая проверка не отслеживает сопротивлений порядка десятков Ом, следует обязательно считывать показания с индикатора прибора. Еще лучше пользоваться контрольной лампой, включая ее относительно «30» (неполный накал свечения укажет на неисправность). Дело в том, что целостность провода при микротоках «прозвонки» мультиметром может исчезать при токовой нагрузке близкой к реальной (характерно для внутренних обломов или сильной коррозии проводников). Общее правило: ни при каких условиях на выводах заземления ECU (соединенных с «массой») не должно наблюдаться напряжение более 0.25V.





контрольная лампа, контрольная лампа с источником питания и их реализация в виде щупа.

Пример системы управления, критичной к качеству питания -- Nissan ECCS, особенно у модели Maxima 95 года и выше. Так плохой контакт двигателя с «массой» здесь приводит к тому, что ECU перестает управлять зажиганием по нескольким цилиндрам, и создается иллюзия неисправности соответствующих каналов управления. Эта иллюзия особенно сильна, если двигатель имеет небольшой объем и заводится на двух цилиндрах (Primera). На поверку дело может также оказаться в незачищенной клемме «30» АКБ или в том, что батарея разряжена. Стартуя при пониженном напряжении на двух цилиндрах, двигатель не достигает нормальных оборотов х.х., поэтому генератор не может увеличить напряжение в бортовой сети. В результате ECU продолжает управлять лишь двумя катушками зажигания из четырех, как будто неисправен. Характерно, что если попытаться завести такую машину «с толкача», она заведется нормально. Описанную особенность приходилось наблюдать даже у системы управления 2002 года выпуска.

Если а/м оснащен штатным иммобилайзером, запуску двигателя предшествует авторизация ключа зажигания. В процессе ее должен произойти обмен импульсными посылками между ECU двигателя и ECU иммобилайзера (обычно -- по включению зажигания). Об успешности этого обмена судят по секъюрити-индикатору, например, на приборной панели (должен погаснуть). Для транспондерного иммобилайзера наиболее распространенные проблемы это плохой контакт в месте подсоединения кольцевой антенны и изготовление владельцем механического дубликата ключа, не содержащего идентификационной метки. При отсутствии индикатора иммобилайзера обмен можно наблюдать осциллографом на выводе Data Link разъема диагностики (или на выводе K- , либо W-линии ECU -- зависит от межблочных соединений). В первом приближении важно, чтобы хоть какой-то обмен наблюдался, подробнее см. здесь.

Управление впрыском и зажиганием требует запуска ECU как генератора импульсов управления, а также -- синхронизации этой генерации с механикой двигателя. Запуск и синхронизацию обеспечивают сигналы с датчиков положения коленвала и/или распредвала (далее для краткости будем называть их датчиками вращения). Роль датчиков вращения первостепенна. Если ECU не получает от них сигналов с необходимыми амплитудно-фазовыми параметрами, работать как генератор импульсов управления он не сможет.

Амплитуда импульсов указанных датчиков может быть измерена осциллографом, правильность фаз обычно проверяется по меткам установки ремня (цепи) газораспределительного механизма (ГРМ). Датчики вращения индуктивного типа проверяются путем замера их сопротивления (обычно от 0.2 КОм до 0.9 КОм для разных систем управления). Датчики Холла и фотоэлектрические датчики вращения (например, а/м Mitsubishi) удобно проверять осциллографом или индикатором импульсов на микросхеме (см. ниже).

Заметим, что иногда путают два типа датчиков, называя индуктивный датчик датчиком Холла. Это, конечно, не одно и то же: основу индуктивного составляет многовитковая проволочная катушка, тогда как основа датчика Холла – магнитоуправляемая микросхема. Соответственно отличаются явления, используемые в работе этих датчиков. В первом -- электромагнитная индукция (в проводящем контуре, находящемся в переменном магнитном поле, возникает э.д.с., а если контур замкнут – электрический ток). Во втором -- эффект Холла (в проводнике с током – в данном случае в полупроводнике, -- помещенном в магнитное поле, возникает электрическое поле, перпендикулярное направлению и тока, и магнитного поля; эффект сопровождается возникновением разности потенциалов в образце). Датчики на эффекте Холла называются гальваномагнитными датчиками, однако, в практике диагностики это название не прижилось.

Встречаются модифицированные индуктивные датчики, содержащие кроме катушки и ее сердечника еще и микросхему-формирователь с целью получения на выходе сигнала, уже пригодного для цифровой части схемы ECU (например, датчик положения коленвала в системе управления Simos/VW). Обратите внимание: модифицированные индуктивные датчики часто неправильно изображаются на электросхемах как катушка с третьим экранирующим проводом. На самом деле экранирующий провод образует с одним из неправильно указанных на схеме как конец обмотки проводом цепь питания микросхемы датчика, а оставшийся провод – сигнальный (67 вывод ECU Simos). Условное обозначение как у датчика Холла может быть принято, т.к. достаточно для понимания главного отличия: модифицированный индуктивный датчик в отличие от просто индуктивного требует подачи питания и имеет на выходе прямоугольные импульсы, а не синусоиду (строго говоря, сигнал несколько сложнее, но в данном случае это неважно).



Прочие датчики выполняют вторичную роль по сравнению с датчиками вращения, поэтому здесь скажем лишь, что в первом приближении проверить их исправность можно путем отслеживания изменения напряжения на сигнальном проводе вслед за изменением того параметра, который измеряет датчик. Если измеряемая величина меняется, а напряжение на выходе датчика – нет, он неисправен. Многие датчики проверяются путем замера их электрического сопротивления и сравнения с образцовым значением.

Следует помнить, что датчики, содержащие электронные компоненты, могут работать только при поданном на них напряжении питания (подробнее см. ниже).

Проверка функций исполнения. Часть 1.

К функциям исполнения ECU системы управления двигателем относятся:

управление главным реле;
управление реле бензонасоса;
управление опорными (питающими) напряжениями датчиков;
управление зажиганием;
управление форсунками;
управление побудителем (регулятором) холостого хода -- idle actuator, иногда это просто клапан;
управление дополнительными реле;
управление дополнительными устройствами;
лямбда-регулирование.


Наличие управления главным реле может быть определено по следствию: путем замера напряжения на том выводе ECU, на который оно подается с выхода «87» этого реле (считаем, что проверка работы реле как обеспечивающей функции уже проведена, т.е. исправность самого реле и его проводки установлена, см. выше). Указанное напряжение должно появиться после включения зажигания «15». Другой способ проверки – лампа взамен реле -- маломощной контрольной лампой (не более 5W), включаемой между «30» и управляющим выводом ECU (соответствует «85» главного реле ). Важно: лампа должна гореть полным накалом после включения зажигания.



Проверка управления реле бензонасоса должна учитывать логику работы бензонасоса в исследуемой системе, а также способ включения реле. В некоторых а/м питание обмотки этого реле берется с контакта главного реле. На практике часто проверяют весь канал ECU-реле-бензонасос по характерному жужжащему звуку предварительной подкачки топлива в течение Т=1…3 секунд после включения зажигания.

Однако, такая подкачка есть не у всех а/м, что объясняется подходом разработчика: считается, что отсутствие подкачки благотворно влияет на механику двигателя при старте в связи с опережающим началом работы масляного насоса. В таком случае можно пользоваться контрольной лампой (мощностью до 5W), как это было описано в проверке управления главным реле (с поправкой на логику работы бензонасоса). Этот прием более универсальный, чем «на слух», т.к. даже если первоначальная подкачка имеется, то совсем не обязательно бензонасос будет работать при попытке пуска двигателя.

Дело в том, что в ECU может содержаться «на одном выводе» до трех функций управления реле бензонасоса. Кроме предварительной подкачки, может быть функция включения бензонасоса по сигналу включения стартера («50»), а также – по сигналу датчиков вращения. Соответственно, каждая из трех функций зависит от своего обеспечения, что, собственно, и заставляет их различать. Встречаются системы управления (например, некоторые разновидности TCCS/Toyota), в которых включением бензонасоса управляет концевой выключатель расходомера воздуха, а управление одноименным реле от ECU отсутствует.

Заметим, что разрыв цепи управления реле бензонасоса – распространенный способ блокировки в противоугонных целях. Он рекомендуется к использованию в инструкциях множества охранных систем. Поэтому при отказе работы указанного реле следует проверить, не заблокирована ли цепь управления им?

В некоторых марках а/м (например, Ford, Honda) в целях безопасности применяется штатный автоматический размыкатель проводки, срабатывающий на удар (в Ford размещается в багажнике и поэтому реагирует также и на «выстрелы» в глушителе). Для восстановления работы бензонасоса требуется взводить размыкатель вручную. Заметим, что в Honda, «отсекатель топлива» на самом деле включен в разрыв цепи главного реле ECU и к проводке бензонасоса никакого отношения не имеет.

Управление питающими напряжениями датчиков сводится к поставке таковых ECU при полном включении его питания после включения зажигания. В первую очередь важно напряжение, подаваемое на датчик вращения, содержащий электронные компоненты. Так магнитоуправляемая микросхема большинства датчиков Холла, а также формирователь модифицированного индуктивного датчика питаются напряжением +12V. Нередки датчики Холла с напряжением питания +5V. В американских а/м обычная величина напряжения питания датчиков вращения составляет +8V. Напряжение, подаваемое как питание датчика положения дроссельной заслонки, всегда оказывается около +5V.

Кроме того, многие ECU также «управляют» общей шиной датчиков в том смысле, что «минус» их цепи берется с ECU. Путаница здесь происходит, если питание датчиков замеряют как «плюс» относительно «массы» кузова/двигателя. Конечно, при отсутствии «-» с ECU датчик не будет работать, т.к. цепь его питания разомкнута, неважно, что «+» напряжения на датчике есть. То же происходит при обрыве соответствующего провода в жгуте ECU.



В такой ситуации наибольшие затруднения могут быть вызваны тем, что, например, оказалась в обрыве по общему проводу цепь датчика температуры охлаждающей жидкости системы управления двигателем (далее -- термодатчика, не путать с датчиком температуры для указателя на щитке приборов). Если при этом датчик вращения имеет общий провод отдельного исполнения, то впрыск и зажигание как функции ECU будут присутствовать, но запуск двигателя не произойдет из-за того, что двигатель будет «залит» (дело в том, что обрыв цепи термодатчика соответствует температуре около -40...-50 град. Цельсия, тогда как при холодном пуске количество впрыскиваемого топлива максимально; известны случаи, когда сканеры не отслеживали описанный обрыв -- BMW).

Управление зажиганием обычно проверяют по следствию: наличию искры. Делать это следует с помощью заведомо исправной свечи зажигания, подсоединив ее к высоковольтному проводу, снятому со свечи (проверочную свечу удобно разместить в монтажном «ухе» двигателя). Такой способ требует от диагноста навыка оценки искры «на глаз», т.к. условия искрообразования в цилиндре существенно отличаются от атмосферных, и если визуально слабая искра есть, то в цилиндре она может уже не образовываться. Во избежание повреждений катушки, коммутатора или ECU не рекомендуется проверять искру с высоковольтного провода на «массу» без подсоединенной свечи. Следует применять специальный разрядник с калиброванным зазором, эквивалентным в атмосферных условиях зазору свечи в условиях компрессии в цилиндре.

В случае отсутствия искры следует проверить, поступает ли напряжение питания на катушку зажигания («15» контакт на схеме электропроводки)? А также проверить, появляются ли при включении стартера управляющие импульсы, приходящие от ECU или коммутатора зажигания на «1» контакт катушки (иногда обозначается как «16»)? Отследить импульсы управления зажиганием на катушке можно с помощью контрольной лампы, включаемой параллельно. Если имеется коммутатор, проверьте, поступает ли напряжение питания на это электронное устройство?

На выводе ECU, работающим с коммутатором зажигания, наличие импульсов проверяют осциллографом или при помощи индикатора импульсов. Индикатор не следует путать со светодиодным пробником, применяемым для считывания «медленных» кодов неисправностей:



схема пробника на светодиоде

Использовать указанный пробник для проверки импульсов в паре ECU -- коммутатор не рекомендуется, т.к. для целого ряда ECU пробник создает избыточную нагрузку и подавляет управление зажиганием.

Заметим, что неисправный коммутатор точно также может блокировать работу ECU в части управления зажиганием. Поэтому, когда импульсов нет, проверку повторяют еще раз уже при отключенном коммутаторе. В зависимости от полярности управления зажиганием осциллограф в этом случае может применяться и при соединении его «массы» с «+» АКБ. Данное включение позволяет отслеживать появление сигнала типа «масса» на «висящем» выводе ECU. При таком способе будьте осторожны, не допускайте контакта корпуса осциллографа с кузовом а/м (провода подключения осциллографа могут быть удлиннены до нескольких метров, и это рекомендуется для удобства; удлинение может быть сделано обычным неэкранированным проводом, и отсутствие экранировки никак не помешает наблюдениям и замерам).


Индикатор импульсов отличается от светодиодного пробника тем, что имеет весьма высокое входное сопротивление, что практически достигается включением по входу пробника буферной микросхемы-инвертора, выход которой и управляет через транзистор светодиодом. Здесь важно питать инвертор напряжением +5V. В этом случае индикатор сможет работать не только с импульсами амплитудой 12V, но и даст вспышки от 5-вольтовых импульсов, обычных для некоторых систем зажигания. Документация допускает применение микросхемы-инвертора как преобразователя напряжения, поэтому подача на ее вход 12-вольтовых импульсов будет безопасна для индикатора. Не следует забывать, что существуют системы зажигания с 3-вольтовыми импульсами управления (например, МК1.1/Audi), для которых индикатор приводимого здесь исполнения неприменим.





схема индикатора импульсов

Обратите внимание, что включение красного светодиода индикатора соответствует положительным импульсам. Назначение зеленого светодиода в том, чтобы наблюдать такие импульсы с большой длительностью относительно периода их повторения (т.н. импульсы малой скважности). Включения красного светодиода при таких импульсах будут восприниматься на глаз как непрерывное свечение с еле заметным мерцанием. А поскольку зеленый светодиод гаснет, когда загорается красный, то в рассматриваемом случае основное время зеленый светодиод будет погашен, давая хорошо заметные короткие вспышки в паузах между импульсами. Заметим, что если перепутать местами светодиоды или использовать их одного цвета свечения, индикатор утратит свойство переключения.

Чтобы индикатор смог отслеживать импульсы потенциала «массы» на «висящем» контакте, следует переключить его вход на питание +5V, а импульсы подать непосредственно на 1 вывод микросхемы индикатора. Если позволит конструктив, желательно добавить в схему оксидный и керамический конденсаторы в цепь питания +5V, соединив их с массой схемы, хотя практически отсутствие этих деталей никак не сказывается.

Управление форсунками начинают проверять с измерения напряжения на их общем проводе питания при включенном зажигании - оно должно быть близко к напряжению на аккумуляторной батарее. Иногда это напряжение поставляет реле бензонасоса, в этом случае логика его появления повторяет логику включения бензонасоса данного а/м. Исправность обмотки форсунки может быть проверена мультиметром (автомобильные компьютерные базы по диагностике приводят сведения о номинальных сопротивлениях).

Проверить наличие импульсов управления можно с помощью контрольной лампы небольшой мощности, подключая ее вместо форсунки. Для этой же цели допускается использовать светодиодный пробник, однако для большей достоверности уже не следует отсоединять форсунку, чтобы была сохранена токовая нагрузка.

Напомним, что инжектор с одной форсункой называется моновпрыском (есть исключения, когда в моновпрыск ставится две форсунки для обеспечения надлежащей производительности), инжектор с несколькими, управляемыми синхронно, в том числе попарно-параллельно, называется распределенным впрыском, наконец, инжектор с несколькими форсунками, управляемыми индивидуально – последовательным впрыском. Признак последовательного впрыска -- управляющие провода форсунок каждый своего цвета. Таким образом, в последовательном впрыске проверке подлежит цепь управления каждой форсунки по отдельности. При включении стартера должны наблюдаться вспышки контрольной лампы или светодиода пробника. Однако, в случае отсутствия напряжения на общем проводе питания форсунок, такая проверка не покажет импульсов, даже если они есть. Тогда следует взять питание непосредственно с «+» АКБ – лампа или пробник покажут импульсы, если они есть, и провод управления цел.

Работу пусковой форсунки проверяют совершенно аналогично. Состояние холодного двигателя можно сымитировать, разомкнув разъем термодатчика. ECU с таким открытым входом примет температуру равной, примерно, -40…-50 град. по Цельсию. Существуют исключения. Например, при обрыве цепи термодатчика в системе MK1.1/Audi управление пусковой форсункой действовать перестает. Таким образом, более надежным для данной проверки следует считать включение взамен термодатчика резистора с сопротивлением порядка 10 КОм.

Следует иметь в виду, что встречается неисправность ECU, при которой форсунки остаются все время открытыми и льют бензин непрерывно (из-за наличия постоянного «минуса» вместо периодических импульсов управления). В результате при долговременных попытках завести двигатель можно повредить его механику гидроударом (Digifant II ML6.1/VW). Проверьте, не увеличивается ли уровень масла вследствие того, что бензин стекает в картер двигателя?

При проверке импульсов управления на катушках и форсунках важно отслеживать ситуацию, когда импульсы присутствуют, но в пределах их длительности не происходит коммутации нагрузки с «массой» напрямую. Встречаются случаи (неисправности ECU, коммутатора), когда коммутация происходит через появившееся сопротивление. Об этом будет свидетельствовать сравнительно пониженная яркость вспышек контрольной лампы или ненулевой потенциал импульса управления (проверяется осциллографом). Отсутствие управления хотя бы одной форсункой или катушкой, а равно ненулевой потенциал импульсов управления приведут к неровной работе двигателя, его будет трясти.

Управление побудителем (регулятором) холостого хода, если это просто клапан, можно проверить, услышав его характерное жужжание при включенном зажигании. Рука, положенная на клапан, будет чувствовать вибрацию. Если этого не происходит, следует проверить сопротивление его обмотки (обмоток, для трехпроводного). Как правило, сопротивление обмотки составляет в разных системах управления от 4 до 40 Ом. Часто встречающаяся неисправность клапана холостого хода - его загрязнение и в результате полное или частичное заклинивание подвижной части. Клапан можно проверить с помощью специального прибора (широтно-импульсного генератора), позволяющего плавно изменять величину тока и таким образом наблюдать на клапане через штуцер визуально плавность его открытия и закрытия. Если клапан заклинивает, его необходимо промыть специальным очистителем, а практически бывает достаточно несколько раз сполоснуть ацетоном или растворителем. Заметим, что неработающий клапан холостого хода – причина затрудненного пуска холодного двигателя.

Заслуживает упоминания случай, когда по всем электрическим проверкам клапан х.х. выглядел исправным, но неудовлетворительный х.х. был вызван именно им. По нашему мнению это можно объяснить чувствительностью некоторых систем управления к ослаблению возвратной спиральной пружины клапана вследствие старения металла пружины (SAAB).

Все прочие регуляторы холостого хода проверяются осциллографом по образцовым эпюрам из автомобильных компьютерных баз по диагностике. При проведении измерений разъем регулятора должен быть подсоединен, т.к. иначе на соответствующих ненагруженных выходах ECU генерация может отсутствовать. Наблюдают осциллограммы, изменяя частоту оборотов коленвала.

Отметим, что позиционеры дроссельной заслонки, выполненные как шаговый электродвигатель и играющие роль регулятора холостого хода (например, в моновпрыске), обладают свойством приходить в негодность после длительных периодов бездействия. Старайтесь не покупать их на разборках. Обращаем внимание, что иногда оригинальное название throttle-valve control unit неправильно переводят как «блок управления дроссельной заслонкой». Позиционер приводит в действие заслонку, но не управляет ею, т.к. сам является исполнительным механизмом ECU. Логику работы заслонки задает ECU, а не TVCU. Поэтому сontrol unit в данном случае следует переводить как «узел с прИводом» (TVCU -- узел дроссельной заслонки с сервоприводом в сборе). Нелишне напомнить, что электронных компонентов данное электромеханическое изделие не содержит.

Ряд систем управления двигателем особенно чувствителен к программированию х.х. Здесь имеются в виду такие системы, которые, не будучи запрограммированы по х.х., препятствуют пуску двигателя. Например, может наблюдаться сравнительно легкий пуск двигателя, но без подгазовки тут же произойдет его остановка (не путать с блокировкой штатным иммобилайзером). Или будет затруднен холодный пуск двигателя, и не будет нормального х.х.

Первая ситуация характерна для самопрограммирующихся систем с заданными начальными установками (например, MPI/Mitsubishi). Достаточно поддерживать обороты двигателя акселератором в течение 7…10 минут, и х.х. появится сам собой. После следующего полного отключения питания ECU, например, при замене АКБ, его самопрограммирование потребуется вновь.

Вторая ситуация характерна для ECU, требующих установки базовых параметров управления сервисным прибором (например, Simos/VW). Указанные установки сохраняются при последующих полных отключениях ECU, но сбиваются, если на работающем двигателе отсоединить разъем регулятора х.х. (TVCU).

На этом перечень основных проверок системы управления бензиновым двигателем, собственно, и заканчивается.

Проверка функций исполнения. Часть 2.

Как видно из текста выше, регулятор х.х. уже не имеет решающего значения для пуска двигателя (напомним, условно считалось, что стартер работает, а двигатель не заводится). Тем не менее вопросы работы дополнительных реле и дополнительных устройств, а также -- лямбда-регулирования порой вызывают ничуть не меньшие затруднения в диагностике и, соответственно, тоже порой приводят к ошибочной выбраковке ECU. Поэтому кратко осветим в этой связи важные моменты, которые являются общими для абсолютного большинства систем управления двигателем.

Вот основные положения, которые необходимо знать, чтобы стала ясна логика работы дополнительного оборудования двигателя:

электрический подогрев впускного коллектора применяется для предотвращения выпадения росы и образования льда во впускном коллекторе во время работы холодного двигателя;
охлаждение радиатора обдувом вентилятором может происходить в разных режимах, в том числе -- и некоторое время после выключения зажигания, т.к. передача тепла от поршневой группы в рубашку охлаждения запаздывает;
система вентиляции бензобака предназначена для вывода интенсивно образующихся паров бензина. Пары образуются вследствие нагрева топлива, прокачиваемого через горячую форсуночную рампу. Указанные пары отводятся в систему питания, а не в атмосферу по экологическим соображениям. ECU дозирует подачу топлива с учетом парообразного бензина, поступающего во впускной коллектор двигателя через клапан вентиляции бензобака;
система рециркуляции отработавших газов (отвода их части в камеру сгорания) предназначена для снижения температуры горения топливной смеси и, как следствие, -- уменьшения образования окислов азота (токсичны). ECU дозирует подачу топлива также с учетом работы и этой системы;
лямбда-регулирование выполняет роль обратной связи по выхлопу, чтобы ECU «видел» результат дозирования топлива. Лямбда-зонд или, иначе, кислородный датчик работает при температуре чувствительного элемента около 350 град. Цельсия. Нагрев обеспечивается либо совместным действием встроенного в зонд электрического нагревателя и тепла отработавших газов, либо только лишь теплом отработавших газов. Лямбда-зонд реагирует на парциальное давление остаточного кислорода в отработавших газах. Реакция выражается изменением напряжения на сигнальном проводе. Если топливная смесь бедная, на выходе датчика низкий потенциал (около 0V); если смесь богатая, на выходе датчика высокий потенциал (около +1V). При составе топливной смеси, близком к оптимальному, на выходе датчика происходят переключения потенциала между указанными значениями.

Обратите внимание: часто заблуждение, что периодические колебания потенциала на выходе лямбда-зонда есть следствие якобы того, что ECU периодически меняет длительность импульсов впрыска, тем самым как бы "подлавливая" состав топливной смеси вблизи идеального (т.н. стехиометрического) состава. Наблюдение указанных импульсов осциллографом исчерпывающе доказывает, что это не так. При бедной или богатой смеси ECU действительно меняет длительность импульсов впрыска, но не периодически, а монотонно и только до тех пор, пока кислородный датчик не выдаст колебания своего выходного сигнала. Физика датчика такова, что при составе отработавших газов, соответствующем работе двигателя на примерно стехиометрической смеси, датчик приобретает колебания сигнального потенциала. Как только состояние колебаний на выходе датчика достигнуто, ECU начинает удерживать состав топливной смеси неизменным: раз смесь оптимизирована, никакие изменения не нужны.

Управление дополнительными реле может быть проверено фактически так же, как и управление основными реле (см. Часть 1). Состояние соответствующего выхода ECU тоже может быть отслежено маломощной контрольной лампой, подсоединенной к нему относительно +12V (изредка встречается управление положительным напряжением, что определяется схемой включения второго конца обмотки реле, тогда и лампа включается соответственно -- относительно «массы»). Лампа зажглась -- управление включением того или иного реле подано. Следует лишь обращать внимание на логику работы реле.

Так реле подогрева впускного коллектора срабатывает только на холодном двигателе, что может быть сымитировано, например, включением в разъем датчика температуры охлаждающей жидкости взамен этого датчика – потенциометра номиналом порядка 10 КОм. Вращение регулятора потенциометра от больших сопротивлений к малым будет моделировать прогрев двигателя. Соответственно, вначале реле подогрева должно включаться (если включено зажигание), затем -- отключаться. Отсутствие включения подогрева впускного коллектора может быть причиной затрудненного пуска двигателя и неустойчивых оборотов х.х. (например, PMS/Mercedes).

Реле вентилятора охлаждения радиатора включается, напротив, при горячем двигателе. Возможно двухканальное исполнение этого управления – в расчете на обдув с разными скоростями. Проверяется совершенно аналогично с помощью потенциометра, включаемого вместо термодатчика системы управления двигателем. Заметим, что лишь небольшая группа европейских а/м имеет управление указанным реле от ECU (например, Fenix 5.2/Volvo).

Реле подогрева лямбда-зонда обеспечивает включение нагревательного элемента этого датчика. В режиме прогрева двигателя указанное реле может быть отключено ECU. На прогретом двигателе оно срабатывает сразу при пуске двигателя. Во время движения а/м в некоторых переходных режимах ECU может отключать реле подогрева лямбда-зонда. В ряде систем оно управляется не от ECU, а от одного из основных реле или просто от замка зажигания, либо вообще отсутствует как обособленный элемент. Тогда нагреватель включается одним из основных реле, что вызывает необходимость учитывать логику их работы. Заметим, что встречающийся в литературе термин «реле перемены фазы» означает не что иное, как реле подогрева лямбда-зонда. Иногда нагреватель подключается к ECU напрямую, без реле (например, HFM/Mercedes -- исполнение подогрева примечательно тут еще и тем, что при его включении на выводе ECU не потенциал «массы», а +12V). Отказ подогрева лямбда-зонда приводит к неустойчивой, неровной работе двигателя на х.х. и потере приемистости при езде (весьма актуально для впрысков K- и KE-Jetronic).

Лямбда-регулирование. Помимо отказа лямбда-регулирования вследствие отказа подогрева зонда та же неисправность может наступать еще и в результате исчерпания рабочего ресурса кислородного датчика, из-за ошибочной комплектации системы управления, в силу неправильной работы систем вентиляции и рециркуляции, а также в результате неисправности ECU.

Возможен временный выход из строя лямбда-регулирования в связи с продолжительной работой двигателя на обогащенной смеси. Например, отсутствие подогрева лямбда-зонда приводит к тому, что датчик не отслеживает для ECU результаты дозирования топлива, и ECU переходит на работу по резервной части программы управления двигателем. Характерное значение СО при работе двигателя с отключенным кислородным датчиком – 8% (обратите внимание те, кто при удалении катализатора заодно отключают и передний лямбда-зонд, -- это грубая ошибка). Датчик быстро забивается копотью, которая затем уже сама становится препятствием для нормального функционирования лямбда-зонда. Восстановить датчик можно путем выжигания копоти. Для этого вначале следует выполнить прогон горячего двигателя на высоких оборотах (3000 об/мин. или более) в течение не менее 2…3 минут. Полностью восстановление произойдет после пробега 50…100 км по трассе.

Следует помнить, что лямбда-регулирование возникает не мгновенно, а после достижения лямбда-зондом рабочей температуры (задержка составляет около 1 минуты). Лямбда-зонды, не имеющие внутреннего подогревателя, выходят на рабочую температуру с запаздыванием возникновения лямбда-регулирования около 2 минут после пуска горячего двигателя .

Ресурс кислородного датчика, как правило, не превышает 70 тыс. км при удовлетворительном качестве топлива. Об остаточном ресурсе в первом приближении можно судить по амплитуде изменения напряжения на сигнальном проводе датчика, приняв за 100% амплитуду 0.9V. Изменения напряжения наблюдают при помощи осциллографа или индикатора в виде строчки светодиодов, управляемой микросхемой.



Прикрепленный файл  clip_image003_L_IND.jpg   23,35К   176 Количество загрузок:

лямбда-индикатор

Принципиальные схемы лямбда-индикаторов

Особенность работы лямбда-регулирования состоит в том, что эта функция перестает действовать правильно задолго до того, как ресурс датчика выработан полностью. Под 70 тыс. км понимался предел именно рабочего ресурса, за которым колебания потенциала на сигнальном проводе еще отслеживаются, но по показаниям газоанализатора удовлетворительной оптимизации топливной смеси уже не происходит. По нашему опыту такая ситуация складывается, когда остаточный ресурс датчика падает до, примерно, 60%, или если период изменения потенциала на х.х. возрастает до 3…4 секунд, см. фото. Характерно, что сканирующие устройства не показывают при этом ошибки по лямбда-зонду.


Прикрепленный файл  clip_image001.jpg   27,42К   166 Количество загрузок:

Датчик делает вид, что работает, лябда-регулирование происходит, но CO завышено.


Физически идентичный принцип работы абсолютного большинства лямбда-зондов позволяет производить их замену друг другом. При этом следует учитывать такие моменты.

зонд с внутренним подогревателем нельзя заменять на зонд без подогревателя (наоборот – можно, причем подогреватель желательно задействовать, т.к. у зондов с подогревателем более высокая рабочая температура);
отдельных комментариев заслуживает исполнение лямбда-входа ECU. Лямбда-входов всегда два на каждый зонд. Если первый, «плюсовой» вывод в паре входов сигнальный, то второй, «минусовой» часто оказывается соединен с «массой» внутренним монтажом ECU. Но у многих ECU ни один вывод из этой пары не является «массой». Причем схемотехника входной цепи может подразумевать как внешнее заземление, так и работу без него, когда сигнальными оказываются оба входа. Для правильной замены лямбда-зонда необходимо определить, предусмотрено ли разработчиком соединение «минусового» лямбда-входа с кузовом через зонд?
Сигнальная цепь зонда соответствует проводам черного и серого цвета. Встречаются лямбда-зонды, у которых серый провод соединен с корпусом датчика, и такие, у которых он изолирован от корпуса. За малым исключением серый провод зонда всегда соответствует «минусовому» лямбда-входу ECU. Когда этот вход не соединен ни с одним из выводов заземления ECU, следует «прозвонить» тестером серый провод старого зонда на его корпус. Если он «масса», а у нового датчика серый провод изолирован от корпуса, этот провод при замене датчика должен быть закорочен на «массу» добавочным соединением. Если «прозвонка» показала, что у старого зонда серый провод изолирован от корпуса, новый датчик следует подбирать также с изолированными друг от друга корпусом и серым проводом.

родственная проблема – замена ECU, имеющего собственное заземление лямбда-входа и работающего с однопроводным датчиком, на ECU без собственного заземления по указанному входу и расчитанного на работу с двухпроводным лямбда-зондом также без заземления. Разбиение пары приводит здесь к отказу работы лямбда-регулирования, т.к. один из двух лямбда-входов ECU замены оказывается никуда не подключен. Отметим, что у обоих ECU при несовпадающих схемах цепей лямбда-входов каталожные номера могут совпадать (Buick Riviera);
на V-образных двигателях с двумя зондами не допускается сочетание, когда у одного датчика серый провод на «массе», а у другого -- нет;
практически все лямбда-зонды, поставляемые в запчасти к отечественным ВАЗ, -- брак. Кроме удивительно малого рабочего ресурса, брак также находит выражение в том, что в этих датчиках встречается возникающее в процессе эксплуатации замыкание +12V внутреннего подогревателя на сигнальный провод. При этом ECU выходит из строя по лямбда-входу. В качестве удовлетворительной альтернативы можно рекомендовать лямбда-зонды а/м «Святогор-Рено» (АЗЛК). Это фирменные зонды, отличить их от подделок можно по надписи «Bosch» (на подделках отсутствует). Примечание автора: последний абзац был написан в 2000 году и соответствовал действительности по крайней мере еще пару лет; нынешнее состояние рынка лямбда-зондов для отечественных а/м мне неизвестно.
Лямбда-регулирование как функция ECU может быть проверено при помощи батарейки напряжением 1…1.5V и осциллографа. Последний следует установить в ждущий режим и синхронизировать импульсом управления впрыском. Измерению подлежит длительность этого импульса (сигнал управления форсункой подается одновременно как в измерительное гнездо, так и в гнездо запуска осциллографа; форсунка остается подключенной). Для ECU с заземленным лямбда-входом порядок проверки следующий.

Вначале размыкают сигнальное соединение лямбда-зонда и ECU (по черному проводу датчика). На свободно висящем лямбда-входе ECU должно наблюдаться напряжение +0.45V, его появление свидетельствует о переходе ECU на работу по резервной части программы управления. Отмечают длительность импульса впрыска. Затем подключают «+» батарейки к лямбда-входу ECU, а ее «-» -- к «массе», и наблюдают через несколько секунд уменьшение длительности импульса впрыска (задержка различимого изменения может составить более 10 секунд). Такая реакция будет означать стремление ECU обеднить смесь в ответ на моделирование по его лямбда-входу обогащения. Затем следует соединить этот вход ECU с «массой» и наблюдать (также с некоторой задержкой) увеличение длительности измеряемого импульса. Такая реакция будет означать стремление ECU обогатить смесь в ответ на моделирование по его лямбда-входу ее обеднения. Тем самым проверка лямбда-регулирования как функции ECU будет проведена. Если нет осциллографа, изменение дозирования впрыска в этой проверке может быть отслежено газоанализатором. Описанная проверка ECU должна выполняться не раньше инспекции работы дополнительных устройств системы.

Управление дополнительными устройствами. Под дополнительными устройствами в данном контексте подразумеваются электромеханический клапан EVAP системы вентиляции бензобака (EVAPorative emission canister purge valve – «клапан очистки бака от выделения паров топлива») и клапаны EGR системы рециркуляции отработавших газов (Exhaust Gas Recirculation). Рассмотрим эти системы в простейшей комплектации.

Клапан EVAP (вентиляции бензобака) вступает в работу после прогрева двигателя. Он имеет соединение патрубком с впускным коллектором, и наличие разрежения в этой соединительной магистрали также является условием его работы. Управление происходит импульсами потенциала «массы». Рука, положенная на работающий клапан, чувствует пульсации. Управление ECU этим клапаном алгоритмически связано с лямбда-регулированием, поскольку влияет на состав топливной смеси, так что неисправность клапана вентиляции способна привести к отказу лямбда-регулирования (наведенная неисправность). Проверка работы системы вентиляции проводится вслед за обнаружением отказа лямбда-регулирования (см. выше) и включает в себя следующее:

проверка герметичности соединений впускного коллектора, включая патрубки (т.е. отсутствие подсоса воздуха);
проверка вакуумной магистрали клапана;
(иногда об этом пишут весьма лапидарно: «…проверить на правильность трассы и отсутствие закупорки, пережатия, порезов или отсоединения»);

проверка герметичности клапана (клапан не должен продуваться в закрытом состоянии);
проверка напряжения питания клапана;
наблюдение осциллографом импульсов управления на клапане (кроме того, можно применять пробник на светодиоде или индикатор импульсов);
замер сопротивления обмотки клапана и сравнение полученной величины с номинальной из автомобильных компьютерных баз по диагностике;
проверка целостности проводки.
Заметим, что импульсы управления EVAP не появляются, если использовать для целей индикации контрольную лампу, вставленную в разъем вместо самого клапана. Наблюдение этих импульсов должно происходить только при подключенном клапане EVAP.

Клапаны системы EGR – это перепускной механический клапан и вакуумный электромагнитный клапан. Механический клапан собственно и возвращает часть отработавших газов во впускной коллектор. А вакуумный поставляет разрежение из впускного коллектора («вакуум») для управления открытием механического клапана. Рециркуляция осуществляется на двигателе, прогретом до температуры не ниже +40 град. Цельсия, чтобы не препятствовать быстрому прогреву двигателя, и только на частичных нагрузках, т.к. при значительных нагрузках снижению токсичности отдается меньший приоритет. Такие условия задаются управляющей программой ECU. Оба клапана EGR при рециркуляции открыты (больше или меньше).

Управление ECU вакуумным клапаном EGR алгоритмически связано, также как и управление клапаном EVAP, с лямбда-регулированием, поскольку тоже влияет на состав топливной смеси. Соответственно, при отказе лямбда-регулирования система EGR также подлежит проверке. Типичными внешними проявлениями неисправности этой системы являются неустойчивый х.х. (двигатель может глохнуть), а также провал и рывок при ускорении а/м. И то, и другое объясняется неправильным дозированием топливной смеси. Проверка работы системы EGR включает в себя действия, однотипные с описанными выше при проверке работы системы вентиляции бензобака (см.). Дополнительно учитывается следующее.

Закупорка вакуумной магистрали как и подсос воздуха извне приводят к недостаточному открытию механического клапана, что проявляется в возникновении рывка при плавном разгоне а/м.

Подсос в механическом клапане вызывает приток во впускной коллектор дополнительного количества воздуха. В системах управления с расходомером воздуха -- датчиком MAF (Mass Air Flow) – это количество не будет учтено в общем воздушном потоке. Наступит обеднение смеси, и на сигнальном проводе лямбда-зонда будет низкий потенциал – около 0V.

В системах управления с датчиком давления MAP (Manifold Absolute Pressure – абсолютного давления в коллекторе) приток в результате подсоса дополнительного воздуха во впускной коллектор вызывает там уменьшение разрежения. Измененное за счет подсоса разрежение приводит к несоответствию показаний датчика действительной нагрузке двигателя. Одновременно механический клапан EGR уже не может нормально открываться, т.к. для преодоления усилия его запирающей пружины ему «не хватает вакуума». Наступит обогащение топливной смеси, и на сигнальном проводе лямбда-зонда будет отмечается высокий потенциал – около +1V.

Если система управления двигателем оборудована как MAF-, так и MAP-датчиком, то при подсосе воздуха обогащение топливной смеси на х.х. будет сменяться ее обеднением в переходных режимах.

Проверке также подлежит выхлопная система в части соответствия ее гидравлического сопротивления номиналу. Гидравлическое сопротивление в данном случае – это сопротивление движению отработавших газов от стенок каналов выхлопного тракта. Для понимания настоящего изложения достаточно принять, что гидравлическое сопротивление единицы длины выхлопного тракта обратно пропорционально диаметру его проходного сечения. Если, предположим, частично забился каталитический преобразователь (катализатор), его гидравлическое сопротивление увеличивается, и давление в выхлопном тракте на участке до катализатора растет, т.е. растет оно и на входе механического клапана EGR . Это означает, что при номинальной величине открытия этого клапана, поток отработавших газов через него уже будет превышать номинал. Внешние проявления такой неисправности – провал при разгоне, а/м «не едет». Конечно, внешне похожие проявления при забитом катализаторе будут и у а/м без системы EGR, но тонкость состоит в том, что EGR делает двигатель более чувствительным к величине гидравлического сопротивления выхлопной системы. Это означает, что а/м с EGR приобретет провал разгона гораздо раньше, чем а/м без EGR при той же скорости старения катализатора (нарастания гидравлического сопротивления).

Соответственно, а/м с EGR более чувствительны к процедуре удаления катализатора, т.к. за счет понижения гидравлического сопротивления выхлопной системы давление на входе механического клапана снижается. В результате поток через клапан уменьшается, цилиндры работают «в обогащении». А это препятствует, например, реализации режима предельного ускорения (kickdown), т.к. ECU в этом режиме дозирует (длительностью открытия форсунок) резкое увеличение подачи топлива, и цилиндры окончательно «заливаются». Таким образом, неправильное удаление подзабитого катализатора на а/м с EGR может и не привести к ожидаемому улучшению разгонной динамики. Этот случай из тех примеров, когда будучи абсолютно исправным, ECU формально становится причиной проблемы и может быть необоснованно выбракован.

Для полноты картины следует вспомнить, что в выхлопной системе происходит сложный акустический процесс заглушения шума выхлопа, сопровождающийся возникновением в движущихся отработавших газах вторичных звуковых волн. Дело в том, что глушение шума выхлопа принципиально происходит не в результате поглощения энергии звука специальными поглотителями (их в глушителе просто нет), а в результате отражения глушителем звуковых волн в сторону источника. Оригинальная конфигурация элементов выхлопного тракта представляет собой настройку его волновых свойств, так что волновое давление в выпускном коллекторе оказывается зависимым от длин и сечений указанных элементов. Удаление катализатора сбивает эту настройку. Если в результате такого изменения к моменту открытия выпускного клапана головки цилиндров вместо волны разрежения подойдет волна сжатия, это будет препятствовать опустошению камеры сгорания. Давление в выпускном коллекторе изменится, что отразится на потоке через механический клапан EGR. Такая ситуация также входит в понятие «неправильное удаление катализатора». Здесь тяжело удержаться от каламбура «неправильно -- удалять катализатор», если не знать реальную практику и наработанный опыт автосервисов. На самом деле известны правильные приемы в этой сфере (установка пламегасителей), но их обсуждение уже совсем далеко от темы статьи. Заметим лишь, что прогары наружных стенок и внутренних элементов глушителя также способны привести к дисфункции EGR – по вышеназванным причинам.

Заключение.

Тема диагностики поистине неисчерпаема в приложениях, поэтому мы далеки от мысли считать исчерпывающей и данную статью. По сути, наша главная мысль состояла в пропаганде полезности проверок вручную, не ограничиваясь применением только сканера или мотортестера. Безусловно, статья не ставила цели умалить достоинства этих приборов. Напротив, по нашему мнению они настолько совершенны, что, как ни странно, именно это их совершенство заставляет предостеречь начинающих диагностов от пользования только данными устройствами. Слишком просто и легко получаемые результаты отучают думать.

Нам известно содержание статьи «Мотортестеры – монополия продолжается.» (ж-л «АБС-авто» №09, 2001г.):

«…появились публикации, в которых прослеживается мысль об отказе от мотортестера при диагностике и ремонте автомобиля. Дескать, достаточно иметь сканер, и ты уже «король» диагностики. В крайнем случае, можно дополнить его мультиметром, и тогда возможностям диагноста вообще нет предела. Некоторые отчаянные головы предлагают поставить (положить, повесить) рядом осциллограф.<…> Далее вокруг составленного подобным образом комплекта приборов кипят страсти: наперебой предлагаются различные технологии, которые должны увеличить эффективность и достоверность моторной диагностики. О вреде такого подхода мы уже рассказывали на страницах журнала… » Конец цитаты.

Мы не можем безоговорочно присоединиться к этому мнению. Да, неразумно отказываться от применения оборудования, дающего готовые решения, если диагност «дорос» до работы с таким оборудованием. Но до тех пор, пока применение мультиметра и осциллографа будет изображаться как постыдное, азы диагностики так и останутся непознанными для многих специалистов этой области. Учиться не стыдно, стыдно не учиться.

Всех, кого интересует философская сторона вопроса, отсылаем к повести А. Азимова «Профессия».

Сообщение отредактировал YURI_78RUS: 14 Апрель 2007 - 10:22


#3 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 22 Март 2007 - 03:00

Вот еще кое-что:


Схема блока управления двигателем BMW Siemens MS 40 (190 Кб)
Схема блока управления двигателем BMW Motronic 1.3 (53 Кб)
Схема блока управления двигателем BMW Motronic M 3.1 (162 Кб)
Схема блока управления двигателем BMW Le-Jetronic 0 280 001 310 (30 Кб)
Схема блока управления двигателем Opel-Omega 0 261 200 100 (137 Кб)
Схема блока управления Mono-Jetronic 0 280 000 718 (176 Кб)

все -здесь: http://www.carmaster...ectro/index.htm

#4 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 26 Март 2007 - 11:00

В системах управления Siemens датчик кислорода используется резистивного типа, там изменяется сопротивление. В системах Bosch датчик по типу источника тока. Проверка лямбды в домашних условиях. Нужен: минимум аналоговый высокоомный вольтметр, омметр или цифровой мультиметр, 2 скрепки, секундомер. Желательно асцилограф, способный взять интервал секунд хотя бы 5..6, эстакада или яма. Итак. Залезаем под машину. От лямбды, далее Л, идут 4 провода. 2 белых, серый и черный. Белые это подогрев, серый и черный будут нам нужны для замера. Снимаем разъем рядом с КП. Зажигание выключено. Для начала, разъединяем разъем. Замеряем сопротивление между белыми проводами. (около 10...20 Ом). Собираем разъем. После аккуратно втыкаем вдоль проводов со стороны Л в разъем по разогнутой скрепке по белым проводам. Заводим машину. Измеряем напряжение на скрепках. Должно быть = напряжению на АКБ, около 13.4В. Далее. Либо глушим машину, либо АККУРАТНО вынимаем скрепки и втыкаем их с той же стороны но под резинки серого и черного. Закрепляем контакты вольтметра. Заводим. На х.х. должны быть колебания от 0...0.1 до максимума в 0.9..1.В. Замеряем время от момента О до максимума возрастания напряжения, например в 0.8В. И время, сразу после начала падения и до начала возрастания. (График выложу как вложения будут доступны). Например, у меня амплитуда составила 0.6В, время накопления от 2.5 до 4.5с, и при нажатии на газ и удержании Л давала значения не более 0.7 В и резко падала в 0 и там и отставалась длительное время. Т.е. практически неисправна. Выводы со стороны блока: желтый. Черный - датчик; коричневый, зеленый - подогрев. Схема так же будет позже.

#5 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 12 Апрель 2007 - 02:44

Добавил некоторые рисунки.. Например, диаграмму датчика кислорода в предыдущий пост.

-----

Схемы индикаторов работы лямбда-зонда.

Прикрепленный файл  Lambda_indikator.jpg   40,91К   234 Количество загрузок:

Эта схема соответствует фотографии индикатора в разделе "Диагностика (полный текст)" Добавлен лишь диод защиты микросхемы от неправильной полярности подключения АКБ. Если предполагается использование индикатора для непрерывного контроля, «+» питания следует взять от замка зажигания («15»). Подстроечный резистор позволяет калибровать шкалу (следует установить такую регулировку, чтобы максимальному сигналу с уровнем +1V на 5 выводе микросхемы соответствовало включение светодиода на 10 выводе микросхемы). Если потребуется изменить яркость шкалы, следует подобрать сопротивление резистора на 7 выводе, однако, ток через отдельный светодиод не должен превышать 10 мА.
Может оказаться проще использовать для цели проверки работы лямбда-зонда готовый индикатор на микросхеме A277 (аналог -- К1003ПП1), используемый в звуковоспроизведении. Указанный линейный индикатор напряжения NM5201 типа «светящийся столб» реализуется на радиорынках и в магазинах радиотоваров, например, здесь. С минимальными переделками он превращается в функционально идентичный приведенному выше индикатору (с сайта autospeed.com) и имеет шкалу длиннее на два светодиода.

Вот его схема с внесенными изменениями:
Прикрепленный файл  clip_image005.jpg   30,34К   207 Количество загрузок:

Подстройка максимума (включение светодиода на 4 выводе микросхемы) осуществляется потенциометром 22КОм.
Заметим, что индикатор может быть использован для контроля работы карбюраторного двигателя, если в выхлопной тракт вварить гнездо под лямбда-зонд (с резьбой унифицированного размера М18х1.5) и установить сам датчик. Колебания световой линейки светодиодной шкалы покажут оптимальную настройку карбюратора. Отсутствие колебаний и малая длина линейки будут соответствовать бедной смеси, а максимальная длина линейки при отсутствии колебаний ее длины – богатой смеси. Поскольку карбюратор не обладает адаптивностью впрыскового ECU, от заправки к заправке можно будет увидеть много интересного. Важно задействовать подогреватель лямбда-зонда, а также задать смещение по его сигнальному проводу. При наладке не забывайте, что зонд выходит на рабочую температуру, примерно, за одну минуту.
Прикрепленный файл  clip_image006.jpg   18,75К   178 Количество загрузок:

Сообщение отредактировал YURI_78RUS: 12 Апрель 2007 - 02:59


#6 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 14 Апрель 2007 - 10:31

Добавил еще некоторые рисунки.

#7 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 28 Август 2007 - 01:09

Кое-что по лямбде. (картинка) Прикрепленный файл  zond.jpg   90,52К   204 Количество загрузок:



Также ссылка, на полезные темы по диагностике систем впрыска. Все сам не читал, но для общего образования полезно будет.
здесь: http://www.autodiagn.../MYDIAGNOS.html
Автор собрал разные темы на одном сайте, добавил свои комментарии.

#8 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 02 Март 2009 - 08:29

Осциллограммы с описанием:

поиск неисправности: Прикрепленный файл  osc_Poisk_neispravnosti.pdf   96,89К   132 Количество загрузок:

неисправность катушки: Прикрепленный файл  osc_Defekti_katushki.pdf   80,43К   91 Количество загрузок:

неисправность системы впрыска: Прикрепленный файл  osc_Neispr_sys_Vpriska.pdf   36,24К   112 Количество загрузок:

----------------

Проверка катушки зажигания тестером:Прикрепленный файл  proverka_Katushki__M43__M44_.pdf   49,15К   89 Количество загрузок:

#9 YURI_78RUS

YURI_78RUS

    VIP Member

  • BMW Club Belarus
  • PipPipPipPip
  • 1 820 сообщений

Отправлено 02 Март 2009 - 08:36

Мотроник 1.3 Прикрепленный файл  m1_3.pdf   55,43К   109 Количество загрузок: Мотроник 3.1 Прикрепленный файл  m3_1.pdf   164,96К   142 Количество загрузок:

#10 Maik

Maik

    Новичок

  • Members
  • Pip
  • 18 сообщений

Отправлено 08 Апрель 2009 - 10:46

А схему управления BMW Motronic 1.7 можно где-нибудь найти?




Яндекс.Метрика